EV and detailed Battery information in Economist

As recently mentioned this weeks Economist is a must read for anyone interested in the Electric Car market and the transition to a more electric world.
The Briefing in the UK print edition is called: Electrifying everything
After electric cars, what more will it take for batteries to change the face of energy?
The article desrcibes how the Nissan plant in Sunderland churns our Qashqais and the occasional Leaf.

Though Leafs are the world’s biggest-selling electric vehicle, the Sunderland plant, Britain’s biggest car factory, only made 17,500 of them last year. It made 310,000 Qashqais. And the Qashqais, unlike the Leafs, were profitable. Nissan has so far lost money on every Leaf it has made.

It goes on to say that the EV market with annual sales of 750,000 units last year represents less that 1% of the new car market. The GM bolt along with the Tesla Model 3 and the coming new Nissan Leaf will add significantly to the EV sales numbers.

The Future

Many forecasters reckon that the lifetime costs of owning and driving an electric car will be comparable to those for a fuel burner within a few years, leading sales of the electric cars to soar in the 2020s and to claim the majority sometime during the 2030s. China, which accounted for roughly half the electric vehicles sold last year, wants to see 2m electric and plug-in hybrid cars on its roads by 2020, and 7m within a decade. Bloomberg New Energy Finance (BNEF), a consultancy, notes that forecasts from oil companies have a lot more electric vehicles in them than they did a few years ago; OPEC now expects 266m such vehicles to be on the street by 2040. Britain and France have both said that, by that time, new cars completely reliant on internal combustion engines will be illegal.
ev sales numbers
Battery technology is discussed in detail and explains the first lithium-ion power consumer device was the humble Sony CCD-TR1 camcorder 26 years ago. Since then the demand for lithium-ion power packs has skyrocketed. Last year consumer products accounted for the production of lithium-ion batteries with a total storage capacity of about 45 gigawatt-hours (GWh).
In the same year production of lithium-ion batteries for electric vehicles reached just over half that capacity: 25GWh. But Sam Jaffe of Cairn ERA, a battery consultancy, expects demand for vehicle batteries to overtake that from consumer electronics as early as next year, marking a pivotal moment for the industry. Huge expansion is under way. The top five manufacturers—Japan’s Panasonic, South Korea’s LG Chem and Samsung SDI, and China’s BYD and CATL—are ramping up capital expenditure with a view to almost tripling capacity by 2020. The vast $5bn gigafactory Tesla is building with Panasonic in Nevada is thought to already be producing about 4GWh a year. Tesla says it will produce 35GWh in 2018. Just four years ago, that would have been enough for all applications across the whole world.
watts per year
All the big producers are adding capacity in part because it drives down unit costs, as the past few years have shown (see chart 3). Lithium-ion cells (the basic components of batteries) cost over $1,000 a kilowatt-hour (kWh) in 2010; last year they were in the $130-200 range. GM says it is paying $145 per kWh to LG Chem for the cells that make up the 60kWh battery for the Bolt (the pack, thanks to labour, materials and electronics, costs more than the sum of its cells). Tesla says that cells for the Model 3 are cheaper. Lower costs are not the only improvements; large amounts of R&D investment have led to better power density (more storage per kilogram) and better durability (more discharge-then-recharge cycles).
There are, though, other valuable metals in the picture. Making more batteries means acquiring more lithium, as well as various other metals, including cobalt, for the cathodes. These make up about 60% of the cost of a cell. Being assured of a constant supply of them is as much a strategic consideration for battery-makers as mastering electrochemistry. Since 2015 lithium prices have quadrupled, says Simon Moores of Benchmark Mineral Intelligence, a consultancy. Cobalt’s price has more than doubled over the same period; prices of chemicals containing nickel, also used in cathodes, are rising too.

Cell size

Until now, the mainstay has been a cylindrical cell called the 18650, which looks like a rifle shell. It is 65 millimetres long, 18mm in diameter and has an energy density of perhaps 250 watt-hours per kilogram. (The energy density of petrol, for comparison, is about 50 times greater; but the cell can store that much energy hundreds or thousands of times.) Tesla and Panasonic have now developed the 2170, a bit longer and wider; Mr Musk says it will be the most energy-dense battery on the market. The company says that the cost of driving a Model 3, released in late July to rave reviews, will be half that of any of its previous vehicles.

Stationary Use

For Tesla and other big battery-makers grid-storage projects are the most attractive part of the electricity market; they offer contracts that use up otherwise surplus capacity in satisfying large job lots. But there is also demand for batteries to go “behind the meter”. Tesla serves this market with its Powerwall domestic battery pack, designed to complement the solar panels and solar tiles it offers. Nissan, too, is looking at behind-the-meter applications. It is working with Eaton, an American power-management company, to put “second-life”, or partially used, Leaf batteries into packs that can provide businesses and factories with back-up power, thus replacing polluting diesel generators. The first big customer is the Amsterdam Arena, home to AFC Ajax, a football club.
Well worth a read when stuck for hours trying to clear immigration after flying to Madrid.
 
Save

Leave a Reply

Your email address will not be published. Required fields are marked *